Nom :

PHYS 11

MOCK Final exam

UAM + Newton's laws

UAM acceleration	UAM velocity	UAM position	Newton's 2nd law
$a = \frac{v_2 - v_1}{t}$	$v = at + v_0$	$x = \frac{1}{2}at^2 + v_0t + x_0$	$F = m \cdot a$

Exercise 1 (5 points) A car traveling at 144 km/h constantly brakes until it stops after 10 seconds.

a) Make a drawing of the situation:		
b) What is the distance travelled during the braking?		
c) What is its velocity 5 seconds after the start of braking?		

Exercise 2 (5 points) The system represented below is in equilibrium.

- a) Draw the weight $\overrightarrow{F_1}$ of the lamp, knowing that its magnitude is 60 N and that 1 square represents 10 N.
- b) Draw precisely (on scale) the two other forces $\overrightarrow{F_2}$ and $\overrightarrow{F_3}$ that act each on a wire.
- c) What is the magnitude of F_2 ?
- d) What is the magnitude of F_3 ?

Exercise 3 (5 points) A 60 kg cart is pulled with a force of 120 N on a strait horizontal road.

a) Make a drawing of the situation:

a) Calculate the acceleration of the cart:

b) Calculate its velocity after 4 seconds:

Exercise 4 (5 points) A trolley has a mass of 10 tons. Initially on rest, it acquires a velocity of 108 km/h after 2 min.

a) Give the final velocity of the trolley in m/s:

b) Calculate the acceleration of the trolley:	c) Calculate the force acting on the trolley: