TEST 2

Lois de Newton

UAM acceleration	UAM velocity	UAM position	Newton's 2nd law
$a = \frac{v_2 - v_1}{t}$	$v = at + v_0$	$x = \frac{1}{2}at^2 + v_0t + x_0$	$F = m \cdot a$

$a = \frac{1}{2}$	t	$v = at + v_0$	x =	$\frac{1}{2}at^2 +$	$v_0t + x_0$	$F = m \cdot a$
Exercise 1	A body in equilibrium has: ☐ no motion ☐ no mass ☐ no acceleration ☐ no force acting on it			Exercise 2 A braking car has: no mass no acceleration no force acting on it a non-zero resultant force		
Exercise 3	☐ are ☐ are ☐ are	nnd reaction: perpendicular opposite allways equal to zero e distinct intensities		Exercise 4	Newton	's first law 's second law 's third law
Exercise 5 a) Make a dr		art is pulled with a forc e situation:	e of 120 ľ	N on a strait	horizontal road	d.
a) Calculate	the acceler	ation of the cart:	b)	Calculate its	s velocity after	4 seconds:
Exercise 6	A trolley	has a mass of 10 tons. I	nitially or	n rest, it acq	uires a velocity	of 108 km/h after 2 min.
a) Give the	mass of the	trolley in kg:	b)	Give the f	inal velocity of	the trolley in m/s:
c) Calculate	the acceler	ration of the trolley:	d)	Calculate	the force acting	g on the trolley: